Negin Soltani 37239732ac Initial Push
- Globe Asset
- Spatial Anchors
- Photon Implementation
- Scripts for Globe Control and Initial Country Colorizing
- Script for Reading csv file
2024-05-16 14:41:23 +02:00

208 lines
7.6 KiB
GLSL

Shader "World Political Map/Unlit Earth Glow 2"
{
SubShader
{
Tags {"Queue"="Transparent" "IgnoreProjector"="True" "RenderType"="Transparent"}
//Tags { "RenderType"="Opaque" }
Pass
{
Blend SrcAlpha OneMinusSrcAlpha
ZWrite Off
Cull Front
CGPROGRAM
#include "UnityCG.cginc"
#pragma target 3.0
#pragma vertex vert
#pragma fragment frag
uniform float3 _SunLightDirection; // The direction vector to the light source
uniform float3 v3InvWavelength; // 1 / pow(wavelength, 4) for the red, green, and blue channels
uniform float fOuterRadius; // The outer (atmosphere) radius
uniform float fOuterRadius2; // fOuterRadius^2
uniform float fInnerRadius; // The inner (planetary) radius
uniform float fInnerRadius2; // fInnerRadius^2
uniform float fKrESun; // Kr * ESun
uniform float fKmESun; // Km * ESun
uniform float fKr4PI; // Kr * 4 * PI
uniform float fKm4PI; // Km * 4 * PI
uniform float fScale; // 1 / (fOuterRadius - fInnerRadius)
uniform float fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found)
uniform float fScaleOverScaleDepth; // fScale / fScaleDepth
uniform float4 g; // The Mie phase asymmetry factor & The Mie phase asymmetry factor squared
uniform float _GlowIntensity;
uniform float _Brightness;
struct v2f
{
float4 pos : SV_POSITION;
float3 c0 : COLOR0;
float3 c1 : COLOR1;
float3 t0 : TEXCOORD0;
UNITY_VERTEX_INPUT_INSTANCE_ID
UNITY_VERTEX_OUTPUT_STEREO
};
float scale(float fCos)
{
float x = 1.0 - fCos;
return 0.25 * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}
float3 v3CameraPos, center;
float fCameraHeight;
v2f vertSky(appdata_base v)
{
float fCameraHeight2 = fCameraHeight*fCameraHeight; // fCameraHeight^2
// Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)
float3 v3Pos = mul(unity_ObjectToWorld, v.vertex).xyz - center;
float3 v3Ray = v3Pos - v3CameraPos;
float fFar = length(v3Ray);
v3Ray /= fFar;
// Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere)
float B = 2.0 * (dot(v3CameraPos, v3Ray));
float C = fCameraHeight2 - fOuterRadius2;
float fDet = max(0.0, B*B - 4.0 * C);
float fNear = 0.5 * (-B - sqrt(fDet));
// Calculate the ray's start and end positions in the atmosphere, then calculate its scattering offset
float3 v3Start = v3CameraPos + v3Ray * fNear;
fFar -= fNear;
float fStartAngle = dot(v3Ray, v3Start) / fOuterRadius;
float fStartDepth = exp(-1.0/fScaleDepth);
float fStartOffset = fStartDepth*scale(fStartAngle);
const float fSamples = 2.0;
// Initialize the scattering loop variables
float fSampleLength = fFar / fSamples;
float fScaledLength = fSampleLength * fScale;
float3 v3SampleRay = v3Ray * fSampleLength;
float3 v3SamplePoint = v3Start + v3SampleRay * 0.5;
// Now loop through the sample rays
float3 v3FrontColor = float3(0.0, 0.0, 0.0);
for(int i=int(fSamples); i>0; i--)
{
float fHeight = length(v3SamplePoint);
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
float fLightAngle = dot(_SunLightDirection, v3SamplePoint) / fHeight;
float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight;
float fScatter = (fStartOffset + fDepth*(scale(fLightAngle) - scale(fCameraAngle)));
float3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
v3FrontColor += max(0, v3Attenuate * (fDepth * fScaledLength));
v3SamplePoint += v3SampleRay;
}
v2f o;
UNITY_SETUP_INSTANCE_ID(v);
UNITY_INITIALIZE_OUTPUT(v2f, o);
UNITY_TRANSFER_INSTANCE_ID(v, o);
UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);
o.pos = UnityObjectToClipPos(v.vertex);
o.c0 = v3FrontColor * (v3InvWavelength * fKrESun);
o.c1 = v3FrontColor * fKmESun;
o.t0 = v3CameraPos - v3Pos;
return o;
}
v2f vertAtmos(appdata_base v)
{
// Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)
float3 v3Pos = mul(unity_ObjectToWorld, v.vertex).xyz - center;
float3 v3Ray = v3Pos - v3CameraPos;
float fFar = length(v3Ray);
v3Ray /= fFar;
// Calculate the ray's start and end positions in the atmosphere, then calculate its scattering offset
float3 v3Start = v3CameraPos; // + v3Ray * fNear;
float fStartDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fCameraHeight));
float fStartAngle = dot(v3Ray, v3Start) / fCameraHeight;
float fStartOffset = fStartDepth * scale(fStartAngle);
const float fSamples = 2.0;
// Initialize the scattering loop variables
float fSampleLength = fFar / fSamples;
float fScaledLength = fSampleLength * fScale;
float3 v3SampleRay = v3Ray * fSampleLength;
float3 v3SamplePoint = v3Start + v3SampleRay * 0.5;
// Now loop through the sample rays
float3 v3FrontColor = float3(0.0, 0.0, 0.0);
for(int i=int(fSamples); i>0; i--)
{
float fHeight = length(v3SamplePoint);
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
float fLightAngle = dot(_SunLightDirection, v3SamplePoint) / fHeight;
float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight;
float fScatter = (fStartOffset + fDepth*(scale(fLightAngle) - scale(fCameraAngle)));
float3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
v3FrontColor += max(0, v3Attenuate * (fDepth * fScaledLength));
v3SamplePoint += v3SampleRay;
}
v2f o;
UNITY_SETUP_INSTANCE_ID(v);
UNITY_INITIALIZE_OUTPUT(v2f, o);
UNITY_TRANSFER_INSTANCE_ID(v, o);
UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);
o.pos = UnityObjectToClipPos(v.vertex);
o.c0 = v3FrontColor * (v3InvWavelength * fKrESun);
o.c1 = v3FrontColor * fKmESun;
o.t0 = v3CameraPos - v3Pos;
return o;
}
// Mie phase function
float getMiePhase(float fCos, float fCos2, float2 g)
{
return 1.5 * ((1.0 - g.y) / (2.0 + g.y)) * (1.0 + fCos2) / pow(1.0 + g.y - 2.0 * g.x * fCos, 1.5);
}
// Rayleigh phase function
float getRayleighPhase(float fCos2)
{
return 0.75 + 0.75*fCos2;
}
v2f vert(appdata_base v) {
center = float3(unity_ObjectToWorld[0][3], unity_ObjectToWorld[1][3], unity_ObjectToWorld[2][3]);
v3CameraPos = _WorldSpaceCameraPos - center; // The camera's current position
fCameraHeight = length(v3CameraPos); // The camera's current height
if (fCameraHeight >= fOuterRadius) {
return vertSky(v);
} else {
return vertAtmos(v);
}
}
half4 frag(v2f IN) : SV_Target {
UNITY_SETUP_INSTANCE_ID(IN);
UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX(IN);
float fCos = dot(_SunLightDirection, IN.t0) / length(IN.t0);
float fCos2 = fCos*fCos;
float3 col = getRayleighPhase(fCos2) * IN.c0 + getMiePhase(fCos, fCos2, g) * IN.c1;
col = 1.0 - exp(col * -_Brightness);
#if !UNITY_COLORSPACE_GAMMA
col.rgb = GammaToLinearSpace(col.rgb);
#endif
return saturate(half4(col, Luminance(col) * _GlowIntensity )) ;
}
ENDCG
}
}
// FallBack Off
}