import os, json, argparse, math, numpy as np, faiss, sys # ---------- IO ---------- def load_chunks(p): with open(p, "r", encoding="utf-8") as f: chunks = json.load(f) for c in chunks: if "text" not in c or "file" not in c or "chunk_index" not in c: raise ValueError("Each chunk must have 'file', 'chunk_index', 'text'") c.setdefault("text",""); c["chunk_index"]=int(c["chunk_index"]) return chunks def load_qrels(p): qrels, queries = {}, {} with open(p, "r", encoding="utf-8") as f: for line in f: r = json.loads(line) qid = r["qid"] queries[qid] = r.get("query","") gains = {(x["file"], int(x["chunk_index"])): int(x.get("rel",1)) for x in r["relevant"]} qrels[qid] = gains return queries, qrels def ensure_dir(p): os.makedirs(p, exist_ok=True) # ---------- Metrics ---------- def precision_at_k(ranked, relset, k): k=min(k,len(ranked)); return (sum(1 for d in ranked[:k] if d in relset)/k) if k>0 else 0.0 def recall_at_k(ranked, relset, k): return (sum(1 for d in ranked[:k] if d in relset)/max(1,len(relset))) def average_precision(ranked, relset): if not relset: return 0.0 ap,hits=0.0,0 for i,d in enumerate(ranked,1): if d in relset: hits+=1; ap+=hits/i return ap/max(1,len(relset)) def reciprocal_rank(ranked, relset): for i,d in enumerate(ranked,1): if d in relset: return 1.0/i return 0.0 def zscore(x): x = np.asarray(x, dtype=np.float32) mu, sd = float(x.mean()), float(x.std()) + 1e-9 return (x - mu) / sd def dcg_at_k(ranked, gains, k): dcg=0.0 for i,d in enumerate(ranked[:k],1): g=gains.get(d,0) if g>0: dcg+=(2**g-1)/math.log2(i+1) return dcg def ndcg_at_k(ranked, gains, k): dcg=dcg_at_k(ranked,gains,k) ideal=sorted(gains.values(), reverse=True) idcg=0.0 for i,g in enumerate(ideal[:k],1): idcg+=(2**g-1)/math.log2(i+1) return dcg/idcg if idcg>0 else 0.0 def evaluate(run, qrels, k_vals): agg={f"P@{k}":0.0 for k in k_vals}|{f"R@{k}":0.0 for k in k_vals}|{f"nDCG@{k}":0.0 for k in k_vals} agg["MAP"]=0.0; agg["MRR"]=0.0 N=0 for qid,gains in qrels.items(): ranked = run.get(qid, []) relset = {d for d,g in gains.items() if g>0} for k in k_vals: agg[f"P@{k}"] += precision_at_k(ranked, relset, k) agg[f"R@{k}"] += recall_at_k(ranked, relset, k) agg[f"nDCG@{k}"] += ndcg_at_k(ranked, gains, k) agg["MAP"] += average_precision(ranked, relset) agg["MRR"] += reciprocal_rank(ranked, relset) N += 1 for m in agg: agg[m]/=max(1,N) return agg # ---------- Formatting ---------- def detect_family(model_id: str) -> str: mid = model_id.lower() if "bge" in mid: return "bge" if "e5" in mid and "multilingual" not in mid: return "e5" return "none" def format_passages(texts, fmt: str): if fmt=="e5": return [f"passage: {t.strip()}" for t in texts] if fmt=="bge": return [f"Represent this document for retrieval: {t.strip()}" for t in texts] return [t if isinstance(t,str) else str(t) for t in texts] def format_queries(texts, fmt: str): if fmt=="e5": return [f"query: {t.strip()}" for t in texts] if fmt=="bge": return [f"Represent this query for retrieval: {t.strip()}" for t in texts] return [t.strip() for t in texts] def zscore(x): x = np.asarray(x, dtype=np.float32) mu, sd = float(x.mean()), float(x.std()) + 1e-9 return (x - mu) / sd # ---------- Main ---------- def main(): ap = argparse.ArgumentParser() ap.add_argument("--chunks", default='./assets/lecture_chunks.json') ap.add_argument("--qrels", default='./assets/qrels_recording.jsonl') ap.add_argument("--out_dir", default='./') ap.add_argument("--faiss_index", default='./assets/embeddings_v0.2_enhanced.faiss', help="Optional prebuilt index matching model & format") ap.add_argument("--model_id", default="sentence-transformers/all-mpnet-base-v2") ap.add_argument("--format", default="none", choices=["auto","none","e5","bge"]) ap.add_argument("--topk", type=int, default=5, help="final k after re-rank") ap.add_argument("--rerank_topM", type=int, default=100, help="first-stage depth to re-rank") ap.add_argument("--batch", type=int, default=128) # reranker ap.add_argument("--reranker_model", default="cross-encoder/ms-marco-MiniLM-L-6-v2") ap.add_argument("--fuse", choices=["none","wsum"], default="none", help="'none' = pure CE order; 'wsum' = z-scored weighted with base sims") ap.add_argument("--gamma", type=float, default=0.7, help="weight for CE in 'wsum'") ap.add_argument("--tune_gamma", action="store_true", help="Grid-search gamma to maximize nDCG@topk on this run (use on DEV split)") ap.add_argument("--gamma_grid", default="0.5,0.6,0.7,0.8", help="Comma-separated gamma values to try if --tune_gamma (e.g., '0.4,0.5,0.6,0.7,0.8')") args = ap.parse_args() ensure_dir(args.out_dir) chunks = load_chunks(args.chunks) queries, qrels = load_qrels(args.qrels) qids = list(qrels.keys()) fmt = args.format if args.format!="auto" else detect_family(args.model_id) print(f"[INFO] retriever={args.model_id} | format={fmt} | reranker={args.reranker_model}") # 1) Retriever: build/load index from sentence_transformers import SentenceTransformer, CrossEncoder enc = SentenceTransformer(args.model_id) if args.faiss_index and os.path.exists(args.faiss_index): index = faiss.read_index(args.faiss_index) assert index.ntotal == len(chunks), "Index size ≠ chunks length." doc_embs = None # not needed unless fuse=wsum else: passages = format_passages([c["text"] for c in chunks], fmt) doc_embs = enc.encode(passages, batch_size=args.batch, convert_to_numpy=True, normalize_embeddings=True).astype("float32") X = doc_embs.astype("float32"); faiss.normalize_L2(X) index = faiss.IndexFlatIP(X.shape[1]); index.add(X) faiss.write_index(index, os.path.join(args.out_dir, "recording_text.index")) # Encode queries q_texts = [] qids = list(qrels.keys()) for qid in qids: q = queries.get(qid, "") q_texts.append(f"query: {q.strip()}" if args.format == 'e5' else q) q_embs = enc.encode(q_texts, batch_size=128, convert_to_numpy=True, normalize_embeddings=True).astype("float32") # First-stage search M = max(args.rerank_topM, args.topk) sims, ids = index.search(q_embs, M) # caches for gamma tuning / rebuild BASE_SIMS = [] # list[np.ndarray] (size M) per query CE_SCORES = [] # list[np.ndarray] (size M) per query BASE_KEYS = [] # list[list[Tuple[file, chunk_index]]] per query # 2) Cross-encoder re-rank ce = CrossEncoder(args.reranker_model, max_length=512) run_base, run_rer = {}, {} for qi, qid in enumerate(qids): rows = ids[qi].tolist() base_keys = [(chunks[r]["file"], int(chunks[r]["chunk_index"])) for r in rows] run_base[qid] = base_keys cand_texts = [(chunks[r]["text"] or "").replace("\n"," ").strip() for r in rows] pairs = [(q_texts[qi], t) for t in cand_texts] ce_scores = ce.predict(pairs, batch_size=32).astype(np.float32) # if args.fuse == "none": # order = np.argsort(-ce_scores) # else: # base_sims = sims[qi].astype(np.float32) # fused = args.gamma * zscore(ce_scores) + (1.0 - args.gamma) * zscore(base_sims) # order = np.argsort(-fused) # order = order[:args.topk] # run_rer[qid] = [base_keys[i] for i in order] # --- cache for possible tuning --- BASE_KEYS.append(base_keys) BASE_SIMS.append(sims[qi].astype(np.float32)) CE_SCORES.append(ce_scores) # If not tuning, produce final ranked list now if not args.tune_gamma: if args.fuse == "none": order = np.argsort(-ce_scores) else: fused = args.gamma * zscore(ce_scores) + (1.0 - args.gamma) * zscore(sims[qi].astype(np.float32)) order = np.argsort(-fused) order = order[:args.topk] run_rer[qid] = [base_keys[i] for i in order] # Only meaningful if we're fusing scores if args.tune_gamma: if args.fuse == "none": print("[WARN] --tune_gamma ignored because --fuse=none") else: def ndcg_k(ranked_keys, gains, k): import math dcg = 0.0 for i, d in enumerate(ranked_keys[:k], 1): g = gains.get(d, 0) if g > 0: dcg += (2**g - 1) / math.log2(i + 1) ideal = sorted(gains.values(), reverse=True) idcg = 0.0 for i, g in enumerate(ideal[:k], 1): idcg += (2**g - 1) / math.log2(i + 1) return dcg / idcg if idcg > 0 else 0.0 gammas = [float(x) for x in args.gamma_grid.split(",") if x.strip()] best_g, best_ndcg = args.gamma, -1.0 for g in gammas: ndcgs = [] for qi, qid in enumerate(qids): fused = g * zscore(CE_SCORES[qi]) + (1.0 - g) * zscore(BASE_SIMS[qi]) order = np.argsort(-fused)[:args.topk] cand = [BASE_KEYS[qi][i] for i in order] ndcgs.append(ndcg_k(cand, qrels[qid], k=args.topk)) m = float(np.mean(ndcgs)) if ndcgs else 0.0 if m > best_ndcg: best_ndcg, best_g = m, g print(f"[TUNE] gamma={best_g:.2f} (nDCG@{args.topk}={best_ndcg:.4f})") args.gamma = best_g # Rebuild reranked run using tuned gamma run_rer = {} for qi, qid in enumerate(qids): fused = args.gamma * zscore(CE_SCORES[qi]) + (1.0 - args.gamma) * zscore(BASE_SIMS[qi]) order = np.argsort(-fused)[:args.topk] run_rer[qid] = [BASE_KEYS[qi][i] for i in order] # 3) Evaluate base vs re-ranked k_vals = (1,3,5,10) base_metrics = evaluate(run_base, qrels, k_vals) rer_metrics = evaluate(run_rer, qrels, k_vals) print("\n[BASE] ", {k: round(v,4) for k,v in base_metrics.items()}) print("[RERANK]", {k: round(v,4) for k,v in rer_metrics.items()}) # Save CSV import csv with open(os.path.join(args.out_dir, "rerank_metrics_recording.csv"), "w", newline="", encoding="utf-8") as f: cols = ["stage"] + list(base_metrics.keys()) w = csv.DictWriter(f, fieldnames=cols); w.writeheader() w.writerow({"stage":"base", **{k: round(v,6) for k,v in base_metrics.items()}}) w.writerow({"stage":"rerank", **{k: round(v,6) for k,v in rer_metrics.items()}}) print(f"[OK] Saved: {os.path.join(args.out_dir, 'rerank_metrics_recording.csv')}") if __name__ == "__main__": main()