RecordingRAG/embedding_ablations.py

277 lines
11 KiB
Python

import os, json, argparse, math, time, csv, sys
from typing import List, Dict, Tuple
import numpy as np
import faiss
# ---------- IO ----------
def load_chunks(p):
with open(p, "r", encoding="utf-8") as f:
chunks = json.load(f)
for c in chunks:
if "text" not in c or "file" not in c or "chunk_index" not in c:
raise ValueError("Each chunk must have 'file', 'chunk_index', 'text'")
c.setdefault("text", "")
c["chunk_index"] = int(c["chunk_index"])
return chunks
def load_qrels(p):
qrels, queries = {}, {}
with open(p, "r", encoding="utf-8") as f:
for line in f:
r = json.loads(line)
qid = r["qid"]
queries[qid] = r.get("query", "")
rel_list = r.get("relevant") or r.get("rels") or r.get("labels") or r.get("items")
if rel_list is None:
raise ValueError(f"{p}: missing 'relevant' field")
gains = {(x.get("file") or x.get("pdf_path") or x.get("path"),
int(x.get("chunk_index") or x.get("page_index") or (int(x["slide_number"])-1)))
: int(x.get("rel", 1)) for x in rel_list}
qrels[qid] = gains
return queries, qrels
def ensure_dir(p): os.makedirs(p, exist_ok=True)
# ---------- Metrics ----------
def precision_at_k(ranked, relset, k):
k = min(k, len(ranked));
return (sum(1 for d in ranked[:k] if d in relset)/k) if k>0 else 0.0
def recall_at_k(ranked, relset, k):
return (sum(1 for d in ranked[:k] if d in relset)/max(1,len(relset)))
def average_precision(ranked, relset):
if not relset: return 0.0
ap, hits = 0.0, 0
for i,d in enumerate(ranked,1):
if d in relset: hits += 1; ap += hits/i
return ap/max(1,len(relset))
def reciprocal_rank(ranked, relset):
for i,d in enumerate(ranked,1):
if d in relset: return 1.0/i
return 0.0
def dcg_at_k(ranked, gains, k):
dcg=0.0
for i,d in enumerate(ranked[:k],1):
g=gains.get(d,0)
if g>0: dcg+=(2**g-1)/math.log2(i+1)
return dcg
def ndcg_at_k(ranked, gains, k):
dcg=dcg_at_k(ranked,gains,k)
ideal=sorted(gains.values(), reverse=True)
idcg=0.0
for i,g in enumerate(ideal[:k],1):
idcg+=(2**g-1)/math.log2(i+1)
return dcg/idcg if idcg>0 else 0.0
def evaluate_run(run: Dict[str, List[Tuple[str,int]]], qrels: Dict[str, Dict[Tuple[str,int], int]], k_vals=(1,3,5,10)):
agg = {f"P@{k}":0.0 for k in k_vals} | {f"R@{k}":0.0 for k in k_vals} | {f"nDCG@{k}":0.0 for k in k_vals}
agg["MAP"] = 0.0; agg["MRR"] = 0.0
N = 0
for qid, gains in qrels.items():
ranked = run.get(qid, [])
relset = {d for d,g in gains.items() if g > 0}
for k in k_vals:
agg[f"P@{k}"] += precision_at_k(ranked, relset, k)
agg[f"R@{k}"] += recall_at_k(ranked, relset, k)
agg[f"nDCG@{k}"] += ndcg_at_k(ranked, gains, k)
agg["MAP"] += average_precision(ranked, relset)
agg["MRR"] += reciprocal_rank(ranked, relset)
N += 1
for m in agg: agg[m] /= max(N,1)
return agg
# ---------- Formatting ----------
def model_family(model_id: str) -> str:
mid = model_id.lower()
if "e5" in mid and "multilingual" not in mid: return "e5" # English E5
if "bge" in mid: return "bge" # BGE English
return "plain" # MPNet, GTE, MiniLM, multi-qa-*
def format_passages(texts: List[str], family: str) -> List[str]:
if family == "e5":
return [f"passage: {t.strip()}" for t in texts]
if family == "bge":
return [f"Represent this document for retrieval: {t.strip()}" for t in texts]
return [t if isinstance(t, str) else str(t) for t in texts]
def format_queries(texts: List[str], family: str) -> List[str]:
if family == "e5":
return [f"query: {t.strip()}" for t in texts]
if family == "bge":
return [f"Represent this query for retrieval: {t.strip()}" for t in texts]
return [t.strip() for t in texts]
# ---------- FAISS ----------
def build_index(embs: np.ndarray) -> faiss.IndexFlatIP:
X = embs.astype("float32")
faiss.normalize_L2(X)
idx = faiss.IndexFlatIP(X.shape[1])
idx.add(X)
return idx
# ---------- Helpers ----------
def parse_model_spec(spec: str):
"""
Allow 'model_id' or 'model_id::/path/to/index.faiss'
Returns (model_id, faiss_override_path or None)
"""
if "::" in spec:
m, p = spec.split("::", 1)
return m.strip(), p.strip()
return spec.strip(), None
def load_st_model(model_id: str):
from sentence_transformers import SentenceTransformer
try:
return SentenceTransformer(model_id)
except Exception as e:
print(f"[WARN] Could not load {model_id}: {e}", file=sys.stderr)
return None
# ---------- Main ----------
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--chunks", default='./assets/lecture_chunks.json', help="lecture_chunks.json")
ap.add_argument("--qrels", default='./assets/qrels_recording.jsonl', help="qrels_recording.jsonl")
ap.add_argument("--out_dir", default='./')
ap.add_argument("--models", nargs="+", required=True,
help="List like: 'sentence-transformers/multi-qa-mpnet-base-dot-v1::/path/embeddings_enhanced.faiss' 'BAAI/bge-base-en-v1.5' ...")
ap.add_argument("--k_list", nargs="+", type=int, default=[1,3,5,10,20])
ap.add_argument("--topk", type=int, default=20)
ap.add_argument("--batch", type=int, default=128)
args = ap.parse_args()
ensure_dir(args.out_dir)
chunks = load_chunks(args.chunks)
queries, qrels = load_qrels(args.qrels)
qids = list(qrels.keys())
# Prepare raw query texts once
q_texts_raw = [queries.get(qid, "") for qid in qids]
results = []
per_model_runs = {}
for spec in args.models:
model_id, faiss_override = parse_model_spec(spec)
fam = model_family(model_id)
print(f"\n===== {model_id} (family={fam}) =====")
mslug = model_id.replace("/", "_").replace(":", "_")
mdir = os.path.join(args.out_dir, mslug)
ensure_dir(mdir)
emb_path = os.path.join(mdir, "doc_embs.npy")
idx_path = os.path.join(mdir, "faiss.index")
# Encoder (needed for queries; for docs only if we rebuild)
enc = load_st_model(model_id)
if enc is None:
continue
# ----- Build or load index -----
index = None
if faiss_override:
if not os.path.exists(faiss_override):
print(f"[WARN] FAISS override not found: {faiss_override}")
else:
index = faiss.read_index(faiss_override)
if index.ntotal != len(chunks):
print(f"[WARN] Override index size {index.ntotal} != chunks {len(chunks)}; ignoring override.")
index = None
if index is None:
# use cached per-model artifacts if present
if os.path.exists(emb_path) and os.path.exists(idx_path):
try:
doc_embs = np.load(emb_path)
index = faiss.read_index(idx_path)
if index.ntotal != len(chunks):
index = None
except Exception:
index = None
if index is None:
corpus_texts = [c["text"] for c in chunks]
corpus_fmt = format_passages(corpus_texts, fam)
t0 = time.time()
doc_embs = enc.encode(corpus_fmt, batch_size=args.batch, convert_to_numpy=True,
normalize_embeddings=True).astype("float32")
t1 = time.time() - t0
print(f"[TIME] Encoded {len(chunks)} chunks in {t1:.1f}s")
index = build_index(doc_embs.copy())
faiss.write_index(index, idx_path)
np.save(emb_path, doc_embs)
# ----- Encode queries -----
q_fmt = format_queries(q_texts_raw, fam)
t0 = time.time()
q_embs = enc.encode(q_fmt, batch_size=args.batch, convert_to_numpy=True,
normalize_embeddings=True).astype("float32")
t1 = time.time() - t0
print(f"[TIME] Encoded {len(q_embs)} queries in {t1:.1f}s")
# ----- Search -----
sims, ids = index.search(q_embs, args.topk)
# Build run keyed by (file, chunk_index)
run = {}
for i, qid in enumerate(qids):
rows = ids[i].tolist()
run[qid] = [(chunks[r]["file"], int(chunks[r]["chunk_index"])) for r in rows]
per_model_runs[model_id] = run
# ----- Evaluate -----
k_vals = tuple(sorted(set(args.k_list)))
metrics = evaluate_run(run, qrels, k_vals=k_vals)
row = {"model": model_id} | {k: round(float(v), 6) for k, v in metrics.items()}
results.append(row)
print("[RESULT]", row)
# ----- Leaderboard -----
if results:
results_sorted = sorted(results, key=lambda r: (r.get("nDCG@10",0.0), r.get("R@10",0.0)), reverse=True)
csv_path = os.path.join(args.out_dir, "embedding_ablation_leaderboard.csv")
with open(csv_path, "w", newline="", encoding="utf-8") as f:
cols = ["model"] + [k for k in results_sorted[0].keys() if k != "model"]
w = csv.DictWriter(f, fieldnames=cols); w.writeheader()
for r in results_sorted: w.writerow(r)
print(f"\n[OK] Wrote leaderboard: {csv_path}")
# Plots (top-5 for clarity)
try:
import matplotlib.pyplot as plt
k_vals = sorted(set(args.k_list))
topN = results_sorted[:5]
plt.figure(figsize=(7,5))
for r in topN:
m = r["model"]
M = evaluate_run(per_model_runs[m], qrels, k_vals=tuple(k_vals))
ys = [M[f"R@{k}"] for k in k_vals]
plt.plot(k_vals, ys, marker="o", label=m)
plt.xlabel("k"); plt.ylabel("Recall"); plt.title("RecordingRAG: Recall@k across models")
plt.legend(); plt.tight_layout()
plt.savefig(os.path.join(args.out_dir, "recall_at_k_models.png"), dpi=150, bbox_inches="tight"); plt.close()
plt.figure(figsize=(7,5))
for r in topN:
m = r["model"]
M = evaluate_run(per_model_runs[m], qrels, k_vals=tuple(k_vals))
ys = [M[f"nDCG@{k}"] for k in k_vals]
plt.plot(k_vals, ys, marker="o", label=m)
plt.xlabel("k"); plt.ylabel("nDCG"); plt.title("RecordingRAG: nDCG@k across models")
plt.legend(); plt.tight_layout()
plt.savefig(os.path.join(args.out_dir, "ndcg_at_k_models.png"), dpi=150, bbox_inches="tight"); plt.close()
print(f"[OK] Saved plots to {args.out_dir}")
except Exception as e:
print(f"[WARN] Plotting failed: {e}")
else:
print("[ERROR] No models ran successfully.")
if __name__ == "__main__":
main()